
Mansour Haneen mansourhaneen.com

Chapter 1

Software is computer programs and associated documentation. Software products may be

developed for a particular customer or may be developed for a general market.

Software engineering is a process of analyzing user requirements and then designing, building,

and testing software applications.

Role of Management in Software Development

Software products

1. Generic products
Stand-alone systems that are marketed and sold to any customer who wishes to buy them.

Examples – PC software such as graphics programs, project management tools; CAD software;

software for specific markets such as appointments systems for dentists.

2. Customized products
Software that is designed for a specific customer to meet their own needs.

Examples – embedded control systems, air traffic control software, traffic monitoring systems.

Essential attributes of good software

1. Maintainability
Software should be written in such a way so that it can evolve to meet the changing needs of

customers.

The ability to update it.

2. Dependability and security
Malicious users should not be able to access or damage the system.

3. Efficiency

Software should not make wasteful use of system resources such as memory and processor

cycles.

Efficiency therefore includes responsiveness, processing time, memory utilisation, etc.

4. Acceptability
Software must be acceptable to the type of users for which it is designed.

https://mansourhaneen.com/

Challenges for Software Engineering Practices

1. Heterogeneity
systems are required to operate as distributed systems across networks that include different

types of computer and mobile devices.

2. Business and social change
They need to be able to change their existing software and to rapidly develop new software.

3. Security and trust
The software must be secure and trustable.

Application types

1. Stand-alone applications
They include all necessary functionality and do not need to be connected to a network.

2. Interactive transaction-based applications
Applications that execute on a remote computer and are accessed by users from their own PCs

or terminals.

Note// These include web applications such as e-commerce applications.

3. Embedded control systems
These are software control systems that control and manage hardware devices.

Note// Numerically, there are probably more embedded systems than any other type of

system.

4. Batch processing systems
These are business systems that are designed to process data in large batches.

They process large numbers of individual inputs to create corresponding outputs.

5. Entertainment systems
These are systems that are primarily for personal use and which are intended to entertain the

user.

6. Systems for modeling and simulation
These are systems that are developed by scientists and engineers to model physical processes

or situations.

7. Data collection systems
These are systems that collect data from their environment using a set of sensors and send

that data to other systems for processing.

8. Systems of systems
These are systems that are composed of a number of other software systems.

software life cycle is The period of time that starts when a software product is conceived and ends

when the product is no longer available for use.

Note// The software life cycle typically includes a requirement phase, design phase, implementation

phase, test phase, installation and check out phase, operation and maintenance phase, and sometimes

retirement phase”.

These activities involve the development of software from scratch until it is delivered to customers.

Software Process Model
Is the structured set of activities that are required to develop the software system.

Many different software processes but all involve:

• Specification – defining what the system should do.

• Design and implementation – defining the organization of the system and implementing the

system.

• Validation – checking that it does what the customer wants.

• Evolution – changing the system in response to changing customer needs.

Note// A software process model is an abstract representation of a process. It presents a description of

a process from some particular perspective.

Types of Software process models

1. The Waterfall Model.
Plan-driven model. Separate and distinct phases of specification and development.
The waterfall model is also referred to as a linear-sequential life cycle model.

In a waterfall model, each phase must be completed before the next phase can begin and

there is no overlapping in the phases.

In Waterfall model, typically, the outcome of one phase acts as the input for the next phase

sequentially.

Note// Waterfall model is the earliest software development life cycle (SDLC). It is also

referred to as a linear-sequential life cycle model.

Waterfall model phases

Advantages & Disadvantages

2. Incremental Development Model
Specification, development and validation are interleaved. May be plan-driven or agile.
Incremental model uses the linear sequential approach with the iterative nature of

prototyping.

Incremental development is based on the idea of developing an initial implementation,

delivering it to user for feedback and improving it through several versions of product releases

until an acceptable system is developed.

In incremental model the whole requirement is divided into various builds.

• During each iteration, the development module goes through the requirements,

design, implementation and testing phase.

• Each subsequent release of the module adds function to the previous release. The

process continues till the complete system is ready as per the requirement.

Note// The key to use of incremental development model successfully is rigorous validation of

requirements, and verification of each version of the software against the requirements.

Advantages & Disadvantages

3. Reuse-Oriented Model
The system is assembled from existing components. May be plan-driven or agile.
Based on systematic reuse where systems are integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

This often happens informally when people working on the project know of designs or code

that is similar to what is required.

Note// Reuse is now the standard approach for building many types of business system.

the stages of “requirements specification” and “system validation” are same as in other models

but intermediate stages in this model are different.

Explanation of Reuse-Oriented Model Phases

Note// In practice, most large systems are developed using a process that incorporates elements

from all of these models.

4. Boehm’s Spiral Model
A risk-driven software process framework (the spiral model) was proposed by Boehm.

Process is represented as a spiral rather than as a sequence of activities with some

backtracking from one activity to another.

Note// Each loop in the spiral represents a phase in the process.

No fixed phases such as specification or design - loops in the spiral are chosen depending on

what is required.

Risks are explicitly assessed and resolved throughout the process.

Explanation of Spiral Model Activities

Advantages & Disadvantages

5. Agile model
is a combination of iterative and incremental process models with focus on process

adaptability and customer satisfaction by rapid delivery of working software product.

Note// Agile Methods break the product into small incremental builds.

These builds are provided in iterations. At the end of each iteration a working product is

displayed to the customer.

In Agile development less time is spent on planning and more focus on the features need to be

developed.

Draw

Advantages & Disadvantages

Chapter 2

Requirements Engineering The process of establishing the services that the customer requires

from a system and the constraints under which it operates and is developed.

The requirements themselves are the descriptions of the system services and constraints that are

generated during the requirements engineering process.

Note// Requirements engineering is one of the most crucial activity in this creation process.

Crucial Process Steps of Requirement Engineering

1. Requirements elicitation
Here requirements are identified with the help of customer and existing systems process if

available.

This is also known as gathering of requirements.

2. Requirements analysis
The requirements are analyzed in order to identify inconsistencies, defects, omissions, and also

resolve conflicts if any.

3. Requirements documentations
It is the foundation for the design of the software.

Note// The document is known as software requirements specification (SRS).

4. Requirements review
The review process is carried out to improve the quality of the SRS.

The primary output of requirements engineering is requirements specifications.

• If it describes both hardware and software, it is a system requirement specification.

• If it describes only software, it is a software requirement specification.

Types of Requirements

1. Functional requirements
Describe functionality or system services.

Depend on the type of software, expected users and the type of system where the software is

used.

Note// Functional user requirements may be high-level statements of what the system should

do.

Functional system requirements should describe the system services in detail.

2. Non-functional requirements
These define system properties and constraints (reliability, response time and storage

requirements). Constraints are (I/O device capability, system representations, etc).

Note// Process requirements may also be specified mandating a particular IDE, programming

language or development method.

Non-functional requirements may be more critical than functional requirements. If these are

not met, the system may be useless.

Non-Functional Classifications

• Product requirements

Requirements which specify that the delivered product must behave in a particular

way (execution speed, reliability, etc).

• Organizational requirements
Requirements which are a consequence of organisational policies and procedures

(process standards used, implementation requirements, etc).

• External requirements
Requirements which arise from factors which are external to the system and its

development process (interoperability requirements, legislative requirements, etc).

User and System Requirements

• User requirement
are written for the users and include functional and non-functional requirement.

Note// User requirements should specify the external behavior of the system with some

constraints and quality parameters.

• System requirement
are derived from user requirement. They are expanded form of user requirements.

• A measure provides a quantitative indication of the extent, amount, dimension,

capacity, or size of some attribute of the product or process”.

• Measurement is the act of determine a measure.

• metric is a quantitative measure of the degree to which a system, component, or

process possesses a given attribute.

Categories of Metrics

1. Product metrics
Describe the characteristics of the product such as size, complexity, design features,

performance, efficiency, reliability, portability, etc.

2. Process metrics
Describe the effectiveness and quality of the processes that produce the Software product.

Examples are:

• Effort required in the process.

• Time to produce the product.

• Effectiveness of defect removal during development

• Number of defects found during testing.

• Maturity of the process.

3. Project metrics
Describe the project characteristics and execution.

Examples are:

• Number of software developers

• Staffing pattern over the life cycle of the software

• Cost and schedule

• Productivity

Software Requirements Specification (SRS) Document

The SRS is a specification for a particular s/w product, program, or set of programs that performs

certain functions in a specific environment.

Note// The SRS serve as contract document between customer and developer.

Note// SRS reduces the probability of the customer being disappointed with the final product.

Nature of the SRS: The basic issues of that SRS writer(s) shall address the following:

1. Functionality

2. External interface

3. Performance

4. Attributes

5. Design constraints imposed on an implementation.

Characteristics of a Good SRS

The SRS should be:

• Correct

• Unambiguous

• Complete

• Consistent

• Rank for importance and/ stability

• Verifiable

• Modifiable

• Traceable

Requirements Gathering Techniques

Note// Some requirements gathering techniques may be beneficial in one project but may not be in

other.

1. Brainstorming

Brainstorming is human nature to solve any problem as an early thought process.

It can be utilized to gather a good number of ideas from a group of people by sharing ideas to

identify all possible solutions.

2. Document Analysis
Usually followed where a system is already in place, so evaluating the documentation of a

present system can assist to gather requirements for updating or replacing existing system.

3. Focus Group
is a gathering of people who are customers or user representatives for a product to gain

feedback.

4. Interface Analysis

Interface for any software product are either be human or machine.

5. Interview

Interviews of users and stakeholders are important in creating wonderful software.

6. Observation

The observation covers the study of users in their workplace.

7. Prototyping
Prototyping can be very helpful at gathering feedback.

8. Requirements Workshop
Popularly known as JAD or Joint Application Design, these workshops can be efficient for

gathering requirements.

9. Reverse Engineering
When a legacy project does not have enough documentation, reverse engineering can

determine what system does?

Note// It do not determine what features went wrong with the system and what a system must

do.

10. Survey
When gathering information from many people: too many to interview with time constraints

and less budget: a questionnaire survey can be used.

The survey insists the users to choose from the given options agree / disagree or rate

something.

Chapter 3

Architectural Design

is concerned with understanding how a software system should be organized and designing the overall

structure of that system.

Note// Architectural design is the first stage in the software design process.

It is the critical link between design and requirements engineering, as it identifies the main structural

components in a system and the relationships between them.

The output of the architectural design process is an architectural model that describes how the

system is organized as a set of communicating components.

Use of Architectural Models

• As a way of facilitating discussion about the system design
A high-level architectural view of a system is useful for communication with system

stakeholders and project planning because it is not cluttered with detail.

Stakeholders can relate to it and understand an abstract view of the system. They can then

discuss the system as a whole without being confused by detail.

• As a way of documenting an architecture that has been designed
The aim here is to produce a complete system model that shows the different components in a

system, their interfaces and their connections.

View Model of Software Architecture

• A logical view, which shows the key abstractions in the system as objects or object classes.

• A process view, which shows how, at run-time, the system is composed of interacting

processes.

• A development view, which shows how the software is decomposed for development.

• A physical view, which shows the system hardware and how software components are

distributed across the processors in the system.

Application Architectures

Application systems are designed to meet an organizational need.

Use of Application Architectures

• As a starting point for architectural design.

• As a design checklist.

• As a way of organizing the work of the development team.

• As a means of assessing components for reuse.

• As a vocabulary for talking about application types.

Transaction Processing Systems (TPS)

TPS is a type of information system that collects, stores, modifies and retrieves the data transactions of

an organization.

For example - airline reservation systems, electronic transfer of funds, bank account processing

systems.

From a user perspective a transaction is:

• Any coherent sequence of operations that satisfies a goal;

• For example - find the times of flights from London to Paris.

Users make asynchronous requests for service which are then processed by a transaction manager.

Application Architecture of TPS

Transaction processing systems are usually interactive systems in which users make asynchronous

requests for service.

Asynchronous means that you do not halt all other operations while waiting for the web service call to

return.

The Software Architecture of an ATM System

Chapter 4

Implementation Issues

Implementation may involve developing programs in high- or low-level programming languages or

tailoring and adapting generic, off-the-shelf systems to meet the specific requirements of an

organization.

• Reuse Most modern software is constructed by reusing existing components or systems.

When you are developing software, you should make as much use as possible of existing code.

• Configuration management During the development process, you have to keep track of the

many different versions of each software component in a configuration management system.

• Host-target development Production software does not usually execute on the same

computer as the software development environment. Rather, you develop it on one computer

(the host system) and execute it on a separate computer (the target system).

Software engineering includes all of the activities involved in software development from the initial

requirements of the system through to maintenance and management of the deployed system.

Reuse Levels
• The abstraction level

▪ At this level, you don’t reuse software directly but use knowledge of successful

abstractions in the design of your software.

• The object level
▪ At this level, you directly reuse objects from a library rather than writing the code

yourself.

• The component level
▪ Components are collections of objects and object classes that you reuse in application

systems.

• The system level
▪ At this level, you reuse entire application systems.

Configuration Management
Configuration management is the name given to the general process of managing a changing software

system.

The aim of configuration management is to support the system integration process so that all

developers can access the project code and documents in a controlled way, find out what changes have

been made, and compile and link components to create a system.

Configuration Management Activities

• Version management

where support is provided to keep track of the different versions of software components.

Version management systems include facilities to coordinate development by several

programmers.

• System integration

where support is provided to help developers define what versions of components are used to

create each version of a system.

This description is then used to build a system automatically by compiling and linking the

required components.

• Problem tracking

where support is provided to allow users to report bugs and other problems

and to allow all developers to see who is working on these problems and when they are fixed.

Host-Target Development

Most software is developed on one computer (the host), but runs on a separate machine (the target).

we can talk about a development platform and an execution platform.

• A platform is more than just hardware.

• It includes the installed operating system plus other supporting software such as a database

management system or, for development platforms, an interactive development environment.

Development platform usually has different installed software than execution platform; these platforms

may have different architectures.

Open-Source Development

the source code of a software system is published and volunteers are invited to participate in the

development process.

Note// Its roots are in the Free Software Foundation (www.fsf.org).

Open-source software extended this idea by using the Internet to recruit a much larger population of

volunteer developers. Many of them are also users of the code.

Note// The best-known open-source product is, of course, the Linux operating system.

Open-Source Business

More and more product companies are using an open-source approach to development.

Their business model is not reliant on selling a software product but on selling support for that

product.

They believe that involving the open-source community will allow software to be developed more

cheaply, more quickly and will create a community of users for the software.

Chapter 5

Software Verification and Validation
1. Verification

"Are we building the product right”, “Does the product meet system specifications?”

2. Validation

"Are we building the right product”, “Does the product meet user expectations?”

Software Testing
Testing is the process of executing a program with the intent of finding errors.

Note// Testing can reveal the presence of errors NOT their absence.

Stages of Testing

1. Development testing
where the system is tested during development to discover bugs and defects.

▪ Unit testing
where individual program units or object classes are tested. Unit testing should focus

on testing the functionality of objects or methods.

▪ Component testing
where several individual units are integrated to create composite components.

Component testing should focus on testing component interfaces.

▪ System testing
where some or all of the components in a system are integrated and the system is

tested as a whole. System testing should focus on testing component interactions.

Note// One of the popular development testing techniques is White Box Testing (WBT)

2. Release testing
where a separate testing team test a complete version of the system before it is released to

users.

Release testing shows that the system delivers its specified functionality, performance and

dependability, and that it does not fail during normal use.

Note// Release testing is usually a Black Box Testing (BBT) process

3. User testing
where users or potential users of a system test the system in their own environment.

Types of User Testing

▪ Alpha testing
Users of the software work with the development team to test the software at the

developer’s site.

▪ Beta testing
A release of the software is made available to users to allow them to experiment and

to raise problems that they discover with the system developers.

▪ Acceptance testing
Customers test a system to decide whether or not it is ready to be accepted from the

system developers and deployed in the customer environment. Primarily for custom

(be-spoke) systems.

Black Box Testing (BBT)

also called behavioral testing, focuses on the functional requirements of the software.

Note// BBT enables the software engineer to derive sets of input conditions that will fully exercise all

functional requirements for a program.

BBT is concerned only with the possible inputs and their desired output regardless of the

developmental details.

Note// BBT is performed by a separate testing team NOT the developer their self hence it is one type

of release testing.

BBT Types

There are further many types of BBT but two of the most commonly used types are as follows.

1. Equivalence Partitioning
is a black-box testing method that divides the input domain of a program into classes of data

from which test cases can be derived.

Examples: If a code of calculator has to test using BBT then possible partitioning of input test

data are:

2. Boundary Value Analysis

//↓///

enhances the performance of equivalence partitioning because it leads to the selection of test

cases at the "edges" of the class.

Examples: In boundary value analysis testing test cases are generated as shown in Figure

//↑///

White Box Testing (WBT) //also called glass-box testing.

In WBT test cases are designed using the control structure of the procedural design.

Using white-box testing, software engineers can derive test cases that:

• Guarantee that all independent paths within a module have been exercised at least once.

• Exercise all logical decisions on their true and false sides.

• Execute all loops at their boundaries and within their operational bounds.

• Exercise internal data structures to ensure their validity.

Note// WBT can be applied at any level of development testing.

1. In WBT at first code is converted into descriptive code by assigning the numbers against each

significant step in the code.

2. Then using the Cyclomatic complexity correctness of the program can be assured.

Cyclomatic complexity

is a useful metric for predicting those modules that are likely to be error prone. It can be used for test

planning as well as test case design.

Flow Graph construction

Example 1

Example 2

Problems During Maintenance

1. Often the program is written by another person or group of persons.

2. Often the program is changed by person who did not understand it clearly.

3. Program listings are not structured.

4. High staff turnover.

5. Information gap.

6. Systems are not designed for change

Types of Maintenance

1. Maintenance to repair software faults.

2. Maintenance to adapt software to a different operating environment.

3. Maintenance to add to or modify the system’s functionality.

Maintenance Costs

Usually greater than development costs (2 to 100 times depending on the application).

Affected by both technical and non-technical factors.

Maintenance Cost Factors

• Team stability

• Contractual responsibility

• Staff skills

• Program age and structure

Maintenance Prediction is concerned by identifying the parts of the system that may cause

problems.

Software Re-Engineering

is concerned with taking existing legacy systems and re-implementing them to

make them more maintainable without changing its functionality.

The critical distinction between re-engineering and new software development is

the starting point for the development as shown in Figure

Reengineering process activities

• Source code translation

Convert code to a new language.

• Reverse engineering

Analyze the program to understand it.

• Program structure improvement

Restructure automatically for understandability.

• Program modularization

Reorganize the program structure.

• Data reengineering

Clean-up and restructure system data.

Advantages of RE-Engineering

1. Reduced risk
There is a high risk in new software development. There may be development problems,

staffing problems and specification problems.

2. Reduced cost
The cost of re-engineering is often significantly less than the costs of developing new software.

Reengineering cost factors

• The quality of the software to be reengineered.

• The tool support available for reengineering.

• The extent of the data conversion which is required.

• The availability of expert staff for reengineering.

Review questions

